Overview

Core reference: MIT 6.867 Lecture Notes.

Instructor: Ayush Khaitan
Term: Fall 2025
Time: TBA
Location: SC-119
Office Hours: TBA
Course Tools: Canvas · Gradescope · GitHub

Lecture Schedule & Upload Targets

Lectures (ordered to mirror MIT 6.867)
# Topic Materials
Lecture 01 Introduction, linear classification, perceptron update rule
Lecture 02Perceptron convergence, generalization
  • Lecture notes:
  • Quiz:
Lecture 03Maximum margin classification
  • Lecture notes:
  • Quiz:
Lecture 04Classification errors, regularization, logistic regression
  • Lecture notes:
  • Quiz:
Lecture 05Linear regression, estimator bias & variance, active learning
  • Lecture notes:
  • Quiz:
Lecture 06Active learning (cont.), non-linear predictions, kernels
  • Lecture notes:
  • Quiz:
Lecture 07Kernel regression, kernels
  • Lecture notes:
  • Quiz:
Lecture 08Support vector machines (SVMs) & kernels; kernel optimization
  • Lecture notes:
  • Quiz:
Lecture 09Model selection
  • Lecture notes:
  • Quiz:
Lecture 10Model selection criteria
  • Lecture notes:
  • Quiz:
Lecture 11Description length (MDL), feature selection
  • Lecture notes:
  • Quiz:
Lecture 12Combining classifiers, boosting
  • Lecture notes:
  • Quiz:
Lecture 13Boosting, margin, and complexity
  • Lecture notes:
  • Quiz:
Lecture 14Margin & generalization, mixture models
  • Lecture notes:
  • Quiz:
Lecture 15Mixtures and the expectation–maximization (EM) algorithm
  • Lecture notes:
  • Quiz:
Lecture 16EM, regularization, clustering
  • Lecture notes:
  • Quiz:
Lecture 17Clustering
  • Lecture notes:
  • Quiz:
Lecture 18Spectral clustering, Markov models
  • Lecture notes:
  • Quiz:
Lecture 19Hidden Markov models (HMMs)
  • Lecture notes:
  • Quiz:
Lecture 20HMMs (cont.)
  • Lecture notes:
  • Quiz:
Lecture 21Bayesian networks
  • Lecture notes:
  • Quiz:
Lecture 22Learning Bayesian networks
  • Lecture notes:
  • Quiz:
Lecture 23Probabilistic inference; guest lecture: collaborative filtering
  • Lecture notes:
  • Quiz:
Lecture 24Current problems in machine learning; wrap up
  • Lecture notes:
  • Quiz: