
MATH 495 Machine Learning — Lecture 1 Notes

Source: Tommi Jaakkola, 6.867 Machine learning, lecture 1, MIT OpenCourseWare (Fall 2006).
These bullets are a faithful, lecture-ready condensation of the original text.

Scenario & Data: Access Control via Face Images
• Task. Automated access control from a still face image: output label +1 (permit) or −1 (deny).

• Available information. Labeled images collected while access was manual: positives = allowed,
negatives = denied.

• Augmenting negatives. Because denials are rare, include other face images of people not
expected to be permitted; prefer similar camera/face orientation (e.g., other buildings with similar
systems).

• Objective. Learn a classifier mapping image → {±1} using only the labeled training set.

Representation & Notation
• Vectorization. Grayscale image ⇝ column vector x ∈ Rd by stacking pixel intensities (column

by column).

• Example. 100× 100 pixels ⇒ d = 10,000. All images assumed same size.

• Classifier. Binary-valued function f : Rd → {−1, 1} chosen from training data alone.

• Agnosticism about inputs. From the classifier’s perspective, inputs could be any measured
features (weights, heights, . . . ), not necessarily “image semantics.”

• Training set. {(xt, yt)}nt=1 with xt ∈ Rd, yt ∈ {±1}; this is the only information constraining f .

Memorization vs. Generalization
• Thought experiment (distinct-pixel rule). With n = 50 images of size 128 × 128 (pixel

values in {0, . . . , 255}), it may be possible to find a pixel index i whose values are all distinct
across the n training images.

• A trivial perfect-fit rule. Let xt
i denote pixel i of training image t and x′

i that of a new image
x′. Define

fi(x′) =

yt, if xt
i = x′

i for some t ∈ {1, . . . , n} (in this order),
−1, otherwise.

(1)



• Why this fails. Even same-person images vary (orientation, lighting, etc.). Rule (1) can be
perfect on training yet useless on new images.

• Goal re-stated. We seek generalization: performance on the training set should be indicative
of performance on unseen images from the same task.

Model Selection (Choosing a Function Class)
• Key idea. Constrain the set of candidate functions: if a function from this class performs well

on training data, it is likely to perform well on new data.

• Capacity trade-off.

– If the class is too large, we can fit idiosyncrasies (overfit) and fail to generalize.
– If the class is too small, no function may fit even the training set well (underfit).

• Problem name. Choosing such a class is the model selection problem.

Linear Classifiers Through the Origin
• Fix a class. Thresholded linear maps:

f(x; θ) = sign
(
θ1x1 + · · ·+ θdxd

)
= sign(θ⊤x), θ ∈ Rd. (2)

• Parameterization. Different θ yield different functions in the class; the class is {x 7→ sign(θ⊤x) :
θ ∈ Rd}.

• Geometry.

– Prediction changes only when the argument of sign crosses 0; the decision boundary is
{x : θ⊤x = 0}.

– This boundary is a (d − 1)-dimensional hyperplane through the origin (x = 0 satisfies the
equation).

– θ is normal to the hyperplane; direction of steepest increase of θ⊤x.

• What we lost by restricting to linear.

– No explicit access to pixel adjacency / local continuity (e.g., skin smoothness).
– If we apply the same fixed permutation of pixel positions to all images, predictions are

unchanged: permutation just reorders the sum in (2).

Training Error and Loss
• Empirical 0–1 training error.

Ê(θ) = 1
n

n∑
t=1

(
1− δ

(
yt, f(xt; θ)

))
= 1

n

n∑
t=1

Loss
(
yt, f(xt; θ)

)
, (3)

where δ(y, y′) = 1 if y = y′ and 0 otherwise.

• Loss perspective. Use a loss Loss(y, ŷ) to encode costs (e.g., false accept vs. false reject).
Lecture 1 focuses on zero–one loss: 1 for mistakes, 0 otherwise.

2



Learning Algorithm: The Perceptron
• Goal. Find θ minimizing the training error (3) within the linear class (2).

• Idea. Adjust parameters on mistakes to reduce classification errors.

• Algorithm (cycle through training examples).

θ ← θ + ytxt if yt ̸= f(xt; θ). (4)

• Why the update helps.

– On a mistake, the signed score yt θ⊤xt < 0; on a correct classification, yt θ⊤xt > 0.
– After an update θ′ = θ + ytxt on the same example xt,

yt θ′⊤xt = yt (θ + ytxt)⊤xt = yt θ⊤xt + y2
t ∥xt∥2 = yt θ⊤xt + ∥xt∥2. (5)

– Hence the signed score increases by ∥xt∥2; repeatedly revisiting the same mistake eventually
makes it correct.

• Caveat. Mistakes on other examples may move θ in competing directions; (5) alone does not
prove convergence.

Analysis (Pointer to Next Lecture)
• Stopping condition. Perceptron stops updating only when all training images are classified

correctly (no mistakes).

• Guarantee. If the training set is linearly separable, perceptron finds a separating classifier in a
finite number of updates (proof deferred to Lecture 2).

3


