MATH 495 Machine Learning — Lecture 1 Notes

Source: Tommi Jaakkola, 6.867 Machine learning, lecture 1, MIT OpenCourseWare (Fall 2006). These bullets are a faithful, lecture-ready condensation of the original text.

Scenario & Data: Access Control via Face Images

- Task. Automated access control from a still face image: output label +1 (permit) or -1 (deny).
- Available information. Labeled images collected while access was manual: positives = allowed, negatives = denied.
- Augmenting negatives. Because denials are rare, include other face images of people not expected to be permitted; prefer similar camera/face orientation (e.g., other buildings with similar systems).
- Objective. Learn a classifier mapping image $\rightarrow \{\pm 1\}$ using only the labeled training set.

Representation & Notation

- Vectorization. Grayscale image \leadsto column vector $x \in \mathbb{R}^d$ by stacking pixel intensities (column by column).
- Example. 100×100 pixels $\Rightarrow d = 10,000$. All images assumed same size.
- Classifier. Binary-valued function $f: \mathbb{R}^d \to \{-1, 1\}$ chosen from training data alone.
- **Agnosticism about inputs.** From the classifier's perspective, inputs could be any measured features (weights, heights, ...), not necessarily "image semantics."
- Training set. $\{(x_t, y_t)\}_{t=1}^n$ with $x_t \in \mathbb{R}^d$, $y_t \in \{\pm 1\}$; this is the *only* information constraining f.

Memorization vs. Generalization

- Thought experiment (distinct-pixel rule). With n = 50 images of size 128×128 (pixel values in $\{0, \ldots, 255\}$), it may be possible to find a pixel index i whose values are all distinct across the n training images.
- A trivial perfect-fit rule. Let x_i^t denote pixel i of training image t and x_i' that of a new image x'. Define

$$f_i(x') = \begin{cases} y_t, & \text{if } x_i^t = x_i' \text{ for some } t \in \{1, \dots, n\} \text{ (in this order),} \\ -1, & \text{otherwise.} \end{cases}$$
 (1)

- Why this fails. Even same-person images vary (orientation, lighting, etc.). Rule (1) can be perfect on training yet useless on new images.
- Goal re-stated. We seek *generalization*: performance on the training set should be indicative of performance on *unseen* images from the same task.

Model Selection (Choosing a Function Class)

- **Key idea.** Constrain the set of candidate functions: if a function from this class performs well on training data, it is *likely* to perform well on new data.
- · Capacity trade-off.
 - If the class is too large, we can fit idiosyncrasies (overfit) and fail to generalize.
 - If the class is too small, no function may fit even the training set well (underfit).
- **Problem name.** Choosing such a class is the *model selection* problem.

Linear Classifiers Through the Origin

• Fix a class. Thresholded linear maps:

$$f(x;\theta) = \operatorname{sign}(\theta_1 x_1 + \dots + \theta_d x_d) = \operatorname{sign}(\theta^\top x), \quad \theta \in \mathbb{R}^d.$$
 (2)

- Parameterization. Different θ yield different functions in the class; the class is $\{x \mapsto \text{sign}(\theta^{\top}x) : \theta \in \mathbb{R}^d\}$.
- Geometry.
 - Prediction changes only when the argument of sign crosses 0; the decision boundary is $\{x: \theta^{\top}x = 0\}.$
 - This boundary is a (d-1)-dimensional hyperplane through the origin (x=0 satisfies the equation).
 - $-\theta$ is normal to the hyperplane; direction of steepest increase of $\theta^{\top}x$.
- What we lost by restricting to linear.
 - No explicit access to pixel adjacency / local continuity (e.g., skin smoothness).
 - If we apply the *same fixed permutation* of pixel positions to all images, predictions are unchanged: permutation just reorders the sum in (2).

Training Error and Loss

• Empirical 0–1 training error.

$$\hat{E}(\theta) = \frac{1}{n} \sum_{t=1}^{n} \left(1 - \delta(y_t, f(x_t; \theta)) \right) = \frac{1}{n} \sum_{t=1}^{n} \text{Loss}(y_t, f(x_t; \theta)), \tag{3}$$

where $\delta(y, y') = 1$ if y = y' and 0 otherwise.

• Loss perspective. Use a loss $Loss(y, \hat{y})$ to encode costs (e.g., false accept vs. false reject). Lecture 1 focuses on zero-one loss: 1 for mistakes, 0 otherwise.

Learning Algorithm: The Perceptron

- Goal. Find θ minimizing the training error (3) within the linear class (2).
- Idea. Adjust parameters on mistakes to reduce classification errors.
- Algorithm (cycle through training examples).

$$\theta \leftarrow \theta + y_t x_t \quad \text{if} \quad y_t \neq f(x_t; \theta).$$
 (4)

- Why the update helps.
 - On a mistake, the signed score $y_t \theta^{\top} x_t < 0$; on a correct classification, $y_t \theta^{\top} x_t > 0$.
 - After an update $\theta' = \theta + y_t x_t$ on the same example x_t ,

$$y_t \theta^{\prime \top} x_t = y_t (\theta + y_t x_t)^{\top} x_t = y_t \theta^{\top} x_t + y_t^2 \|x_t\|^2 = y_t \theta^{\top} x_t + \|x_t\|^2.$$
 (5)

- Hence the signed score increases by $||x_t||^2$; repeatedly revisiting the *same* mistake eventually makes it correct.
- Caveat. Mistakes on other examples may move θ in competing directions; (5) alone does not prove convergence.

Analysis (Pointer to Next Lecture)

- **Stopping condition.** Perceptron stops updating only when all training images are classified correctly (no mistakes).
- Guarantee. If the training set is *linearly separable*, perceptron finds a separating classifier in a *finite* number of updates (proof deferred to Lecture 2).